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Abstract

(+)- and (�)-Methylenolactocins and phaseolinic acids are synthesized in four steps via asymmetric syn- and anti-aldol reactions of
chiral N-succinyl-2-oxazolidinones using the same set of reagents.
� 2008 Elsevier Ltd. All rights reserved.
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Fig. 1.
Paraconic acids are a class of naturally occurring tri-
substituted c-butyrolactones containing a C4-carboxylic
acid group.1 They have a similar substitution pattern at
the C3-position bearing either a methyl or a methylene
group. Differences in the alkyl substituents at C5 position
and in the stereochemical relationship among the substitu-
ents lead to a number of paraconic acids in Nature. In
addition, some of the paraconic acids are isolated in both
(+)- and (�)-forms. So, structurally they can be grouped
as (i) 4,5-trans-paraconic acids such as methylenolactocin
1, protolichesterinic acid 2, nephrosterinic acid 3, and roc-
cellaric acid 4; and (ii) 4,5-cis-paraconic acids, for example,
phaseolinic acid 5 and nephromopsinic acid 6 (Fig. 1). In
view of their important biological activities, such as anti-
fungal, antitumor, and antibacterial, the syntheses of these
lactones have attracted considerable interest from organic
and medicinal chemists. There are a number of racemic
as well as asymmetric syntheses of individual paraconic
acids.2–4 However, common asymmetric methods for the
synthesis of both the 4,5-cis- and trans-paraconic acids
are few in the literature.5 Development of a general strat-
egy for the synthesis of both the paraconic acids in their
(+)- and (�)-forms is still a challenging task to organic
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chemists. Herein, we report a general approach for the
synthesis of (+)- and (�)-4,5-trans- and cis-paraconic
acids, for example (+)- and (�)-methylenolactocins
(4,5-trans) and phaseolenic acids (4,5-cis) has been
demonstrated.

Recently, we reported6 asymmetric syn- and anti-aldol
reactions7 using the same set of reactants and reagents by
simply inverting the sequence of base and aldehyde addi-
tions, using N-acyl oxazolidinones containing a c/d-oxygen
functionality (Scheme 1). Accordingly, the synthesis of (+)-
and (�)-methylenolactocins 1 and phaseolinic acids 5 was
initiated from N-succinyl-2-oxazolidinones 7 and 8
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Scheme 2. Reagents and conditions: (a) Method A: TiCl4 (1.1 equiv),
i-Pr2NEt (1.2 equiv), n-hexanal (1.5 equiv), �78 �C, 2 h, �15 �C, 20 h,
64% (9), 62% (10) or Method B: n-Bu2OTf (1.1 equiv) instead of TiCl4
otherwise the same as Method A, 75% ( 9), 80% (10); (b) Method A0: TiCl4
(1.2 equiv), 2-hexenal (1.5 equiv), i-Pr2NEt (1.4 equiv), �78 �C, 3 h, then
�15 �C, 20 h, 72% (11), 70% (12) or Method B0: n-Bu2BOTf (2.5 equiv), 2-
hexenal (1.4 equiv), i-Pr2NEt (2.5 equiv), otherwise the same as Method
A0, 81% (11), 78% (12); (c) LiOH, H2O2, THF–H2O (3:1), 0 �C, 3.5 h, 95–
97%; (d) 10% Pd/C, H2 (1 atm), MeOH, 25 �C, quantitative yields, (e)
NaHMDS (2.2 equiv), CH3I (5.0 equiv), THF, �78 �C to �20 �C, 3 h;
75% [(�)- 5, over two steps], 77% [(+)-5, over two steps].
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(Scheme 2). syn-Aldol reactions of 7 and 8 with n-hexanal
under conventional conditions (Method A: TiCl4, i-Pr2NEt
followed by aldehyde �78 to �15 �C or Method B:
n-Bu2OTf instead of TiCl4) and in situ lactonization affor-
ded the trans-lactones 9 and 10 in high diastereoselectivity
(dr >95:05) with good yields. Under the inverse methods
(Method A0: TiCl4, aldehyde followed by i-Pr 2NEt �78
to �15 �C or Method B0: n-Bu 2OTf instead of TiCl4 ),
anti-aldol reactions of 7 and 8 with 2-hexenal provided,
respectively, cis-lactones 11 and 12 (dr >95:05 ). The selec-
tive removal of the chiral auxiliaries of lactones 9–12 by
treatment with LiOH, H2O2 in THF at 0 �C provided lac-
tones (+)-13, (�)-13, (+)-14, and (�)-14 in high yields.8,9

Catalytic hydrogenation of 14 provided lactones (+)-15

and (�)-15, which are isomeric with lactones 13 having
the desired carboxyl and pentyl substituents at the C4
and C5 positions, respectively. The introduction of a meth-
ylene substituent at C3 of 13 to afford (+)- and (�)-methyl-
enolactocins 1 has already been reported.3s

C3-Methylation of 15 with NaHMDS and MeI afforded
(+)- and (�)-phaseolinic acids 5 in 77% and 75% yields
(over two steps), respectively. The identity and optical pur-
ity of synthetic (+)- and (�)-phaseolinic acids 5 were con-
firmed by comparison with the spectral and physical
properties of those reported in the literature {(+)-5: ½a�29

D

+114.04 (c 0.50, CHCl3); (�)-5: ½a�29
D �113.95 (c 0.50,

CHCl3); [lit.4a [a]D �114.4 (c 1.46, CHCl3)]}.10 Similarly,
asymmetric syn- and anti-aldol reactions of succinyl sub-
strates 7 and 8 with tetradecanal and 2-tetradecenal fol-
lowed by similar chemical modifications could provide
(+)- and (�)-roccellaric acids, protolichesterinic acids,
and nephromopsinic acids.

In conclusion, we have developed a common strategy
for the enantioselective synthesis of 4,5-trans- and cis-

paraconic acids in their (+)- and (�)-forms. This was
demonstrated by the synthesis of (+)- and (�)-methylenol-
actocins (4,5-trans) and phaseolinic acids (4,5-cis) from the
common reactants and reagents.
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